STATISTICS (C) UNIT 2 TEST PAPER 7

1. (i) Briefly explain the difference between a one-tailed test and a two-tailed test.
(ii) State, with a reason, which type of test would be more appropriate to test the claim that this decade's average temperature is greater than the last decade's.
2. A company that makes string wants to assess the breaking strain of its product.
(i) Explain why a sample, and not the whole population, should be used.

A child cuts a 30 cm piece of string into two parts, cutting at a random point.
(ii) Find the probability that one part of the string is more than twice as long as the other.
(iii) Sketch the probability density function of L, the length of the longer part of string.
3. When a park is redeveloped, it is claimed that 70% of the local population approve of the new design. A conservation group, however, carries out a survey of 20 people, and finds that only 9 approve.
(i) Use this information to carry out a hypothesis test on the original claim, working at the 5% significance level. State your conclusion clearly.
If the conservationists are right, and only 45% approve of the new park,
(ii) use a suitable approximation to the binomial distribution to estimate the probability that in a larger survey, of 500 people, less than half will approve.
4. A certain type of steel is produced in a foundry. It has flaws (small bubbles) randomly distributed, and these can be detected by X-ray analysis. On average, there are $0 \cdot 1$ bubbles per cm 3 , and the number of bubbles per cm^{3} has a Poisson distribution.
In an ingot of 40 cm 3 , find
(i) the probability that there are less than two bubbles,
(ii) the probability that there are between 3 and 10 bubbles (inclusive).

A new machine is being considered. Its manufacturer claims that it produces fewer bubbles per cm^{3}. In a sample ingot of $60 \mathrm{~cm}^{3}$, there are just two bubbles.
(iii) Carry out a hypothesis test at the 5% significance level to decide whether the new machine is better. State your hypotheses and conclusion carefully.
(iv) Explain what a Type I error is in this context.
5. The fraction of sky covered by cloud is modelled by the random variable X with probability density function

$$
\begin{array}{ll}
\mathrm{f}(x)=k x(1-x) & 0 \leq x \leq 1 \\
\mathrm{f}(x)=0 & \text { otherwise }
\end{array}
$$

(i) Find k and sketch the graph of $\mathrm{f}(x)$.
(ii) Find the mean and the standard deviation of X.
(iii) Given that flying is prohibited when 81% of the sky is covered by cloud, show that cloud conditions allow flying nearly 90% of the time.
6. In a particular parliamentary constituency, the percentage of Conservative voters at the last election was 35%, and the percentage who voted for the Monster Raving Loony party was 2%.
Use suitable approximations to find
(i) the probability that a random sample of 500 electors will include at least 200 who voted either Conservative or Monster Raving Loony,
(ii) the probability that a random sample of 200 electors will have at least 5 Monster Raving Loony voters in it.
One of (i) or (ii) requires an adjustment to be made before a calculation is done. Explain what this adjustment is, and why it is necessary.

STATISTICS 2 (C) TEST PAPER 7 : ANSWERS AND MARK SCHEME

1. (i) One-tailed : is a parameter greater (or less) than a given value? B1
Two-tailed : is a parameter different from a given value?
B1
(ii) One-tailed, as testing for 'warmer' rather than 'different'
2. (i) If every rope were tested to breaking point, none would be left
(ii) Needs to be cut in either of the 10 cm ends, so prob. $=2 / 3$
(iii) Graph drawn : $1 / 15$ for $15 \mathrm{~S} \mathrm{~S} L \check{\mathrm{~S}} 30,0$ elsewhere
3. (i) Taking $\mathrm{H} 0: p=0 \cdot 7$, no. approving is $X \sim \mathrm{~B}(20, p)$

Under $\mathrm{H} 0, \mathrm{P}(X<10)=\mathrm{P}(X \leq 9)=0.0171<5 \%$
so at 5% level, reject H_{0} and conclude that less than 70% approve
(ii) No. of approvals is $\mathrm{B}(500,0 \cdot 45) \approx \mathrm{N}(225,123 \cdot 75)$, so
$\mathrm{P}(X<250)=\mathrm{P}(X<249 \cdot 5)=\mathrm{P}(Z<24 \cdot 5 / 11 \cdot 12)$
$=\mathrm{P}(Z<2 \cdot 20)=0.986$

B1 B1
M1 A1
A1
M1 A1
M1 A1
M1 A1 11
4. (i) $X \sim \operatorname{Po}(4)$, so $\mathrm{P}(X<2)=0.0916$

B1 M1 A1
(ii) $\mathrm{P}(3 \leq X \leq 10)=0.9972-0.2381=0.759$

M1 M1 A1
(iii) $\mathrm{H}_{0}:$ mean number of bubbles is still $0 \cdot 1$ per cm^{3};
H_{1} : mean $<0 \cdot 1$ B1
Under H_{0}, no. of bubbles in $60 \mathrm{~cm}^{3}$ is $\mathrm{Po}(6)$
B1
Then $\mathrm{P}(X \leq 2)=0.062$, so do not reject H_{0} at 5% level
M1 A1 A1
(iv) Type I error is to reject the old machine in favour of the new, when in fact it is no better
5. (i) Need $k \int x-x^{2} \mathrm{~d} x=1 \quad k\left[\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{1}=1 \quad k=6$

M1 A1 A1

Graph sketched : parabola, vertex upwards, through $(0,0),(1,0)$
(ii) Mean $=0 \cdot 5$, by symmetry
$\operatorname{Var}(X)=6 \int x^{3}-x^{4} \mathrm{~d} x-0.5^{2}=6(0.25-0.2)-0.25=0.05$
M1 A1 A1
so standard deviation $=\sqrt{ } 0 \cdot 05=0.224$
M1 A1
A1
(iii) $\mathrm{P}(x \leq 81 \%)=6 \int_{0}^{0.81} x^{3}-x^{4} \mathrm{~d} x=0.9054$, so cloud M1 A1 cover is $\leq 81 \%$ for about 90% of the time
6. (i) No. of Cons or MRL $\sim \mathrm{B}(500,0 \cdot 37) \approx \mathrm{N}(185,116 \cdot 55)$, so
$\mathrm{P}(X \geq 200)=\mathrm{P}(X>199.5)=\mathrm{P}(Z>14.5 / 10.79)=\mathrm{P}(Z>1 \cdot 34)$
M1 A1
M1 A1 M1
$=1-0.9099=0.0901$
(ii) No. of MRL~B(200, 0.02$) \approx \operatorname{Po}(4)$

A1
so $\mathrm{P}(X \geq 5)=1-0.6288=0.371$
M1 A1
M1 A1 A1
Binomial to Normal needs continuity correction, going from a discrete B1 to a continuous distribution

